[image: image10.jpg]Y AVVN
brainwave

White Paper

NOTICE

BrainWave makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. BrainWave shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

BrainWave assumes no responsibility for the use or reliability of its software on equipment that is not specified in a valid BrainWave software license.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this documentation may be photocopied, reproduced or translated without the prior written consent of BrainWave. Program samples may not be translated into other programming languages without the prior written consent of BrainWave.

Synapses™, Axon™ and the BrainWave logo are being registered as trademarks of BrainWave, Spain.

51.
Abstract

62.
A brief story of what has not been

83.
F. W. Taylor vs. Tailoring

104.
“Form follows Function” (Louis H. Sullivan)

125.
"Nothing is created, nothing is lost, all is transformed" (Lavoisier)

156.
Shaping the Form using Building-Blocks

18Bibliography

This page is left intentionally blank.

1. Abstract

Let put it clearly. All predictions about automation of software production or prophecies on the vanishing of programming appeared to be in the wrong. Actually what is happening seems to be exactly the contrary: a shortage of qualified programmers within the next ten years despite the irruption of new comers from emerging economies.

Indeed, while Moore’s law has been proving its accuracy for now over forty years with the promises for at least an additional decade of similar pace in delivering hardware power increase, productivity in software development remained almost flat.

Recently however, a new notion came into fashion: the so-called Software Factory concept directly inspired in the physical production lines which characteristics such as product consistency, specialized workforce, specialized automated tools, and “componentization” of the solution would also apply to knowledge workers and specifically to software development.

New model or simply buzzword, the Software Factory idea has at least the merit to face a real issue: at the end of the first lustrum of the XXI century, software production is still an handcraft industry.

Since its foundation in 2000 BrainWave, a European company based in Spain has been addressing the challenges of services production for web or voicecentred applications, especially in the electronic Banking and computer-assisted Learning markets. The uniqueness of BrainWave approach rests on two basic components: a Service Creation Environment (Synapses() used to produce channel-independent, network based applications and a Service Logic Execution Environment (Axon(), which is responsible to run the service on

 potentially any existing, commercially available J2EE compliant Application Server (or even standalone).

This paper shortly analyses some of the major challenges that the software development industry is facing in the era of ubiquitous access to information, transactions and communication between people. The document then examines how BrainWave addressed those questions, providing the tools for a palpable productivity boost and allowing for unmatched economies of scale when producing IP-based services and applications.

A brief story of what has not been

Gordon Moore enounced his famous law in 1965. It stated that the number of transitors that can be bundled into one chip would double every 2 years.

[image: image1.png]MOORE'S LAW

1970 1975

Source: Intel

Without the application of the Moore’s law, i.e. the constant improvement of the microprocessor’s technology and its mass production’s processes, what we know today as the Internet and mobile communication would simply still be a utopia. It is amazing for example to realize that there is more processing power into a last generation mobile phone than in a F16 combat aircraft. Of course one must realize that between 1980 and 2005, the density of transistors per microprocessor has been multiplied by a factor of 10,000!

Fair enough, in the meantime dramatic progress has been applied to the software, in order to take advantage of the additional potential of the hardware; this has been especially true in the arena of data compaction and encryption, network protocols and interfaces (e.g. GUI and APIs) as well as Databases.

Those two phenomena combined together provide the foundations for the broadband ubiquitous access to data, transactions, voice and multi-media contents that we glimpse today. The same is true for application development, where Application Servers aim to provide such functions as load balancing, scalability, security, software fault resilience, immunity to hardware failure, transaction processing framework, management as well as operations and statistics features.

Less than ten years ago, an application designer would have had to build all these features into the application where now they are intrinsically supplied by a software platform. And the same applies to languages like Java or XML; or would you imagine developing a web based transactional application today using COBOL85 and SNA-APPN (Advanced Peer-to-Peer Network!) based on IBM MQ-Series and accessed through a HTTP server? Don’t smile; many have tried that during the late nineties.

The problem is that while without the tools mentioned above, today’s applications would be extremely complex to develop, deploy and maintain, the very idea that anything can be accessed, provisioned or updated from anywhere at anytime and through any channel (device) is disrupting so deeply the way people obtain information and use it as well as the way they communicate with each other that the demand for new applications, the identification of new business opportunities and the need for additional communication and entertainment means is just booming. If you are a developer, then this should sound like a piece of good news because these new requirements grow much faster than programming productivity, so your job should be safe beyond your retirement age, despite the aggressive competition from sometimes “delocalised” Software Factories.

And ironically enough, this is not a new trend; on the contrary this has been true since computers exist. Assembly languages revolutionized the way programmers wrote software compared to hexadecimal. ANSI COBOL when published for the first time in 1968, SQL once ideated by Codd and marketed by IBM in the late seventies, BASIC in 1975, C in the eighties, UML in the mid-eighties and finally Java in the early nineties or XML in the late nineties, all promised a new era in software design and development and eventually the death of the Programmer as we know it.

Unfortunately the expectations created by each new technology have been higher by an order of magnitude compared to the benefits that it could deliver. So, will the Software Factory idea just be the same illusion of a story “that eventually will not have been” in the next decade? or on the contrary can one really believe that we are at the point to see the software industry suffering its own industrial revolution in a similar way than manufactured products in the past?

[image: image2.png]

2. F. W. Taylor vs. Tailoring

The Software Factory concept suggests the industrialization of software production as opposed to handcraft development from scratch. This, at least from a Marketing viewpoint, is a powerful message considering that software-houses of the eighties have been re-baptized as Software Factories built around a systematic re-use of components and a set of procedures and practices (e.g. Modelling methodologies, peered review of code) to guarantee fast and high quality software development.

Some push the metaphor farther and mention notions of supply chain and assembly lines where for example a group of developers will focus on GUI or APIs to provide “parts” to other groups who in turn will combine these modules with others in order to produce a software service ready to be deployed.

Can any experienced developer find anything as a disruptive thinking in this approach? Anything which could anticipate the economies of scale that industrialization brought to manufacturing or the Moore’s law to computing? Hardly.

Good programmers have always avoided reinventing the wheel when starting a new project, they have been reusing software modules and components for ever. Come on! Remember: CALL “LOGON”, so one writes once a specialized sub-program (LOGON) which invoked this function each time it is required, independently of the application being run (e.g. customer care or accounting departments).

In many aspects, the gurus of the Software Factory concept are trying to apply mechanically to software development one hundred years old theories, which predicated the atomisation of the production process into small repetitive tasks performed by low-skilled workers (read cheap), who’s practices and outcome’s quality is tightly controlled by specialized middle managers (read more skilled developers or experienced reviewers), all concentrated in a large, clear room. Indeed this has proved to be an unmatched method to produce millions of black-coloured Ford T model cars!

The issue there is that we have been in the mass-customization of products for some time now, and paying a visit to a modern car assembly line would show that the combination of available options result in the production of tens of thousand of different customized models.

And this applied to software creation means unfortunately writing code to match specific users’ demands. This is a bad news for the prophets of Taylorism applied to software production; they thought that the times were come to squeeze any creativity and subjectivity from software development in the benefit of predictable and unbiased code generation and find themselves back into the old paradox of customizing the software in the exact same way as the traditional Independent Software vendors have always managed to do when marketing a vertical or a cross-industry application package to a specific customer.

So, what’s wrong really there?

The inexactness of the analogy between software production and industrial mass production lines is that the last are intended to produce physical goods while software when executed provides a service. And the major difference between a physical good and a service is that one can see, touch, try a good before acquiring it, a service is a product which is evaluated in the moment that it is used. A piece of software is an intangible product, which quality is revealed once already in production; this is when bugs appear (sometime transiently), performance issues raise or maintainability becomes a concern.

Similarly, there exist objective metrics in order to measure the productivity of an assembly line: e.g. how many pieces built in a period of time at a unit cost; and the productivity gains Which methodology should be used to calculate and compare programming productivity: the number of compiled lines of code per day? This is obviously not an objective criteria, for what is important in a piece of software is how fast is the function performed and how predictive its behaviour, not the space required to store it in memory. So, should it be its economic return? Not a very satisfying benchmark neither or would you agree that Microsoft Office programmers productivity is infinite vs. Explorer’s development team given than the first produces billions of dollars in revenue while the second is a freeware web browser.

Want it or not, software development is an intellectual activity achieved by skilled people, it will never fit into models trying to reproduce schemes designed to produce physical goods. Methodologies and processes may be linear, people are not.

[image: image3.png]

“Form follows Function” (Louis H. Sullivan)

Louis H. Sullivan, the most emblematic member of the Chicago School of Architecture used for the first time the formula “form follows function” in a series of articles published at the beginning of the last century. In Sullivan’s mind this meant that a building was first designed to perform a specific purpose and that its shape, the materials used, the use of the available space, the building techniques, the aesthetic, etc. will be depending on this function.

Instead of building the house from the roof as the champions of the software assembly line, confusing mass manufacturing of objects with “object oriented programming”, it may be more appropriate to first establish what is to be achieved (the function) and then design the tools needed to pursue this goal (the form).

This document started with a digression on the Moore’s law and the order of magnitude it means in the enhancement of processors’ power as an example of what economies of scale mean in the industrial world. As a service, i.e. an intangible product with no physical relevancy until it is consumed or used, improvements in productivity cannot reach industrial standards, because it is not an industrial process, instead it is a human activity, which is by definition subjective and not always constant.

The software creation process includes the understanding of a business logic, the analysis of its workflow and some kind of coding of this logic so that it is executed by a server in a specific environment (e.g. a voice or data service through the web). Like when planning the construction of a building, a large part of the effort in a software creation process is dedicated to studying the function and see which form applies to it. Then the only way to scale-up the productivity in software development will consist in simplifying as much as possible the formalism and complexity of how the result of the analysis of an application’s requirements actually translate into executable code.

There is nothing really new in that since formal languages have been created as programming tools (e.g. Cobol, C or Java). SQL is nothing else applied to data manipulation organized in an relational manner rather than bits, bytes or variables in memory. UML is still another formal language using a higher level of abstraction than traditional third generation languages.

Whatever the methodology used to translate a business logic into a executable workflow, the main goals to achieve significant productivity gain in the software creation process and its future maintenance shall provide an output complying with the following characteristics:

· Predictability (deliver expected functionality)

· Stability (behaviour under unexpected conditions)

· Reusability (create once and use infinitely)

· Efficiency (to make the best use of available hardware and software resources).

· Additionally the output of such a tool should be:

· Self-describing (easiness to understand and change)

· Automatically reconfigurable (capacity to be used in different environments)

· Location independent (unconstrained by hardware, OS or DBMS or any mix of them)

· Combinable (the capacity to bring different business logics together and integrate easily with external applications).

· Finally, the productivity gain shall be measurable in the time saved compared with other methodologies or tools in producing and deploying the same business logic.

The traditional answer to these issues has been Modelling. UML is a perfect example of it. If a project’s specifications can be accurately modelled following a methodology and rules, then coding should be reduced to a translation of those models and when the model is comprehensive enough, then the code should eventually be produced automatically. Complexity is thus passed to the design phase with the intention to reduce programming or code generation to a predictable construction activity.

But, UML has been around for over twenty years, so why this has not yet be achieved?

Again, the explanation comes from the difference existing between classical Engineering Process vs. Software Design. The main difference between building a skyscraper and designing an application, is that requirements for edifying a building are stable and can be easily translated into mathematical models, while an application’s requirements evolve. Projects’ delays or failures are almost always justified with the argument that users’ requirements were never established definitely, new and changing requirements were the rule; and those arguments are right because modelling requires planning based on stable requisites.

Again this is due to the fact that software design is a creative and evolving process. During the development cycle, business conditions may change making obsolete some features before they are released or require new ones; and moreover, once the user can “touch and feel” the application, new requirements will appear because new possibilities or new ways of doing things will become visible. Except for some scientific software (e.g. aerospace, telemetric, etc), which may be frizzed because the environment will not change for a long time (e.g. software in a commercial or military aeroplane is designed for long term stability), business software needs to be adaptable to always changing conditions.

These observations have driven some software gurus to elaborate around concepts like “agile software development methods” including “Extreme Programming” philosophy among others. What is interesting in this approach is that it recognizes the particularity of software engineering compared with other tangible goods engineering and as a consequence an adaptive and people oriented methodology through iteration between developers and users. So programmers should be able to deliver prototypes or some pieces of the software from very early stages and enrich and build on the top of it, based on user’s feedback and where the user is actually part of each step of the project as opposed to detailed modelling of specifications, coding and full (and possibly obsolete) project delivery. The benefit for the end-user is a more direct involvement in each phase of the project and a higher control and influence in what the result finally looks like.

Brainwave has been developing and commercialising for the past five years a tool aiming at complying with the specifications mentioned above for the production and deployment of numerous IP-based applications running e-learning, banking and tens of other services in multiple business and local governments environments.

The following section discusses Brainwave´s software suite architecture and how the goals of producing higher quality software in a shorter time are achieved, while better answering to users’ expectation, and transparent, automatic deployment in heterogeneous environments are made possible.

[image: image4.png]

"Nothing is created, nothing is lost, all is transformed" (Lavoisier)

The originality of BrainWave’s approach rests in the level of abstraction that the user interface encompasses in order to cover the functions required for a specific environment: i.e. IP-based services. Instead of focussing on generating executable code out of some specialized language (e.g. UML) or templates, BrainWave’s proposition consists in encapsulating logical functions into context-free “Building Blocks”, which combined together form the business logic.

Integrity of the Service Diagram is checked online while editing the properties, input and output variables. So a missing parameter or a orphan link between two SIBs for example immediately generates a warning or an error message.

Once the service flow has been completed, it is saved as an XML file and downloaded onto an execution platform and run under the umbrella of a Web Application Server (e.g. Websphere, Weblogic, etc.)

In other words, BrainWave offers a Service Creation Environment (Synapses() to create the service flow and a Service Execution Environment (Axon() which will automatically configure the service depending on the actual operating environment (i.e. OS, network and applications interfaces, Web-AS and DBMS).

[image: image5.wmf]Entorno

Visual de

Creación

y

Gestión

(

Familia Addy

Visual)

Motor de

Ejecución

(

Familia Addy

Server)

Medios

de

Acceso

PC

Móvil

PDA

Aplicacione

s

Servicios

JVM

EJB

Nodo

Java

Lógica

-

XML

Nodo

Java

Nodo

Java

Recursos

Externos

B

ases

de

Datos

(JDBC)

Aplicacione

s

Servicios

Web

CORBA

API

Recursos

internos

HTML

WML

Java

SMS

API

Múltiple

Execution Environments

Sistema Operativo

Servidor

Contenedor

EJBs

AS

–

J2EE

Graphical Service Production & Management

Synapses

Ô

Axon

Ô

middleware

Service

Access

Web

PC

Mobile

PDA

Applications

Web services

EJB

SIB

Java

XML

-

Logic

SIB

Java

SIB

Java

External

Resources

Data Bases

(JDBC)

Applications

Web services

CORBA

API

Internal

Resources

HTML

WML

Java

SMS

API

Multiple

Operating system

Hardware server

Container

EJBs

AS

–

J2EE

.NET

SIP

JVM

The concept of using so-called “Independent Building Blocks” (SIB) to create a service is actually not new. It was introduced for the first time in 1992 by the ITU (International Telecommunication Union) and adapted by ETSI (European Telecommunication Standard Institute) to build Intelligent Network based, voice services (e.g. non-geographical number translation) as part of IN standardization and bundled into a graphical Service Creation Environment (SCE), independent of the Service Execution Environment (in IN terms, a Service Control Point or SCP).

The drivers behind IN definition were the coming deregulation in telecommunication services and increasing competition, which push operators to offer quickly new services and features in order to avoid churning and penetrate new market’s segments. As telecom infrastructures were based on proprietary switching technologies, the introduction of new products or their combination into packages was a long and expensive process, requiring highly skilled professionals and offering a very low level of flexibility to manipulate data (e.g. access to subscribers’ database, online tariff or routing plans) or to apply a sophisticated service logic (e.g. execute a particular piece of logic depending on a condition, compare variables, etc).

But the technical regulators who defined the IN architecture and standard were not IT professionals, instead they were telecommunication engineers; they did not think in formal, domain specific or meta languages, libraries or templates. As an alternative, they thought in more “physical” terms, conceiving a building block as a logical unit in charge of performing a defined function, based on some input values and attributes. After the execution of its corresponding piece of logic, the service logic is linked to a next SIB depending on a condition code (e.g. Error or OK). The result of the performed operation (e.g. an algorithm or the formatting of a API or a protocol message) is also passed to the next SIB in form of a variable.

[image: image6.png]

There are several advantages in such an approach:

First, the developer is isolated from the complexity of the performed function. No code is to be written, so no bugs are introduced. As the user interface is built on a graphical tool, understanding of the service logic is easy, thus more practically maintainable.

Furthermore, should a new function (API or protocol message, algorithm , etc) be introduced, it is only necessary to develop once the corresponding code to be encapsulated; it will then be reusable unlimitedly.

Additionally, the combination of several SIBs may constitute a piece of logic that can be reused many times as if it was a “super-SIB”, which is called every time that its functionality is required in a service flow (e.g. Logon service).

Finally, the overall project cycle may be reduced considerably because there is virtually no code to write and debug and service deployment tools like the “Export & Go” function in BrainWave solution allow that a new or modified application can be launched into operation through the mean of a simple click of mouse, online and with no Service interruption.

[image: image7.wmf]Proyecto

J2EE

convencional

Conventional J2EE Project

Idea

Depuración

Depuración

Análisis

Funcional

(

requisitos

)

Análisis

orgánico

Codificación

Componentes

+

Módulos

+

Doc

.

presentación

Ensamblaje

Aplicación

Compilación

Despliegue

en

pruebas

Despliegue

Final

Idea

Idea

Idea

Debugging

Organic

Analysis

Components

+ modules

Coding

+

Doc

presentation

Ensemble

Application

Compiling

Test

Deployment

Final

Deployment

Idea

Idea

Functional

Requirements

Specifications

User

Brainwave Project

Idea

User

Functional

Requirements

Specifications

Export

& Go

Organic analysis

& Graphical coding

Doc

presentation

Debugging

3. Shaping the Form using Building-Blocks

The figure below shows a screenshot of Synapses(as used when creating a new or maintaining an existing service or application.

[image: image8.wmf]SYNAPSES

(ScreenShot)

Project Viewer

Service Viewer

Diagram Viewer

Inspector Window

SIBs palette

Field Editor

As shown above, the screen is divided in 6 main areas in addition to a standard context sensitive tool bar:

The Project viewer: The project is the higher object in the hierarchy; in fact a Project is a whole application and can be divided in several services. A project can be associated to one or several Environment(s) which allow to define the actual operating environment where a project will be deployed and includes parameters as the Operating System, the Web Application Server, the Database, the language or the type of user interface.

The Service viewer: A service is part of a Project. Services can be divided in several Groups within a same project. So developers may have access only to a subset of a project or Groups can be defined based on logical modules of the application. So several Services gathered in several Groups can build one or several Projects that can be shared among Services. A Service can be called from another service and some Parameters and Global Variables. A Service also includes Media Objects which are used for inserting the data within user interfaces templates (e.g. an HTML or a WAP form).

The SIBs Palette: Depending of their function, SIBs are grouped in sub-palettes and are represented by graphical icons. SIBs encapsulate some logic or algorithm. The developer does not have to edit the Java Code of the SIB, but only to define input and output parameters (e.g. variables) and fields. SIBs count with one or more input and output links to chain logically the execution of several SIBs.

The Fields Editor: The Fields Editor is activated by double-clicking on the SIB icon and allow the setting of parameters, default values, variables, etc. Integrity checks of the Service Diagram are also done at that level, so that for example if a property or a parameter is missing, some rule violated or some orphan link found, a warning or error message is immediately displayed on the developer screen.

The Diagram Viewer: Diagram Viewer shows the Service Logic. There is at least one Diagram in a Service, however for easier understanding and maintainability, Services are often divided into several Diagrams corresponding to different logical modules of a Service.

The Inspector Window: which summarizes the context of a SIB in a Project, Service, Group and Diagram to which it belongs.

The main reason for using a graphical user interface instead of a text-based language is that it is much easier to understand and follow the logic of a Diagram flow than in the case of formal language like C++ or Java. It also has the advantage to avoid any syntax error and allow the location and fix of logic bugs much more efficiently.

The modularity of the development environment facilitates small-team work within a Project, by splitting it into several Groups working on different modules (e.g. corresponding to several Services of a same Project), thus peer-review and team management is more efficiently performed.

As important as the clarity of the logic that a graphical environment provides, is the capability to create extremely fast a skeleton or a prototype of a service based on generic requirements and show the result to the customer, collect feedback and suggestions before developing the next phase of the application. In this way, iteration with the customer along the project cycle guarantee that not only deviations regarding customer’s expectation will be quickly identified but also provides a simple way to face unplanned changes in the requirements to be incorporated in the application along the whole project lyfe-cycle.

The SIBs do not produce code, instead they have been written once in Java (by BrainWave or any programmer) and are reused infinitely. Indeed the code contained in many of the SIBs included in the standard product has been executed in production literally billions of times and are guaranteed bugs-free and optimised for performance.

These four characteristics make the software created with Synapses(self-describing (what a SIB does and the links to the logical following one is immediately understandable), predictable (i.e. deliver what was expected), stable (i.e. bugs-free) and efficient (i.e. efficient use of resources).

Reusability and Combinability are a consequence of the modularity of the tool. For example in the same way that for a SIB, a Diagram or a Service can be created once (e.g. Logon) and reused everywhere it is necessary in a project.

Automatic Reconfiguration and Location Independence are provided by the Execution Environment (i.e. Axon(), which will format automatically the data depending on the access defined for the Service (e.g. HTML vs. WAP) and the configuration adapted to the runtime environment defined (e.g. OS, DBMS, Web Application Server), while abstracting completely the developer from any specific knowledge.

All the benefits above improve dramatically Software Development for IP-based Services productivity that BrainWave, based on an experience built on tens of projects, evaluates in at least tenfold compared with other methodologies or tools. It also proves that new, lower skilled programmers are more rapidly up to speed with an experienced team because less training and less experience is required in order to become productive. Finally as a consequence of these characteristics, software maintenance is incomparably trouble-free compared to handcraft produced software.

[image: image9.png]

Bibliography

Some Bibliographic references:

· Executable Modeling with UML - A Vision or a Nightmare? – by Bernhard Rumpe

· The New Methodology - by Martin Fowler

· Chasing Silver Bullets: Realities of Software Factories and Component Based Development - Cogitance Whitepaper Series

· Software Factories – Assembling Applications with Patterns, Models, Frameworks and Tools- by Jack Greenfield

· Software Factories - by Jim Minatel
· Tomorrow's Software Factory--Today - by Matthew Heusser

· Manifesto for Agile Software Development – collective.

· Extreme Programming explained – by K. Beck .
· Lean Software Development: An Agile Toolkit – Mary Poppendieck

BrainWave

a new approach to IP-based data & voice

Services Creation

using a Diagram Programming model

April 2006

_1205757146.ppt
SYNAPSES

(ScreenShot)

Project Viewer

Service Viewer

Diagram Viewer

	

Inspector Window

SIBs palette

Field Editor

MADRID, ENERO 2001

0= (8

n Ver Insertar Formato Herramientas Ayuda

% v

[_[OIx]

| Presentacion | Miscelanea | Fow | DataBase | Format | WEB

Taeston |

sssian

£

Test

vl

Rt

ca

ot

&

suiteh

8]

[Iw_pdaw_pda | bw_agenteiw_agente | bt |

Sows
& bw_agerte
& bw_oierts
£ bw_genarta
& ow_poa

& owowan

& nuevocterte

@ &3 bw_agente
9 & Diagramas
3 bw_agerte

Variables
Presenacion

7

T

N

TE—]m

h‘ﬁ
g g

1 1
]]

o (3 Datos 1 1 S
9 & bw_pda 5l =T [D]
Nodo : 111111341 (collect) -> Diagrama : 2828 (bw) -> Servicio : 2828 (bw) -> Grupo : BW (BW) -> Proyecto : Brainwave (Brainwave)

Propiedad Valor
iuio collest
Descripcidn collect
ostrar 2]

[Otramas/zoniila/Formula

(ustat]

Tipo

Variatle

Valor

Longitug]

Afiadir

Campo de
Campo de S... EMAIL Ambito local

CAMPO1 Ambito global

Aceptar || Cancelar

Borrar

Cortar
Copiar

Mover arriba

_1206194853.ppt

Entorno Visual de Creación y Gestión

(Familia Addy Visual)

Motor de Ejecución

(Familia Addy Server)

Medios de

Acceso

PC

Móvil

PDA

Aplicacione

s

Servicios

JVM

EJB

Nodo

Java

Lógica

-

XML

Nodo

Java

Nodo

Java

Recursos

Externos

B

ases de

Datos

(JDBC)

Aplicacione

s

Servicios

Web

CORBA

API

Recursos

internos

HTML

WML

Java

SMS

API

Múltiple Execution Environments

Sistema Operativo

Servidor

Contenedor

EJBs

AS

–

J2EE

Graphical Service Production & Management

Axon

middleware

Service

 Access

EJB

SIB

Java

XML - Logic

SIB

Java

SIB

Java

External

Resources

HTML

WML

Java

SMS

API

Multiple

Operating system

Hardware server

Container

EJBs

AS

–

J2EE

Synapses

Web

PC

Mobile

PDA

Applications

Web services

Data Bases

(JDBC)

Applications

Web services

CORBA

API

Internal

Resources

.NET

SIP

JVM

_1204051029.ppt

Proyecto J2EE convencional

Conventional J2EE Project

Brainwave Project

Idea

Ensemble

Application

Final

Deployment

User

Depuración

Depuración

Análisis

Funcional

(requisitos)

Análisis

orgánico

Codificación

Componentes

+ Módulos

+

Doc

. presentación

Ensamblaje

Aplicación

Compilación

Despliegue

en pruebas

Despliegue

Final

Idea

Idea

Idea

Debugging

Organic

Analysis

Components

+ modules

Coding

+

Doc

presentation

Compiling

Test

Deployment

Idea

Idea

Functional

Requirements

Specifications

Idea

User

Functional

Requirements

Specifications

Export

& Go

Organic analysis

& Graphical coding

Doc

 presentation

Debugging

